XR 12 // Meta SDK

My first steps started by experimenting with Meta’s Quest Integration for Unity. Here’s a quick rundown of my journey and the challenges I faced.

Easy Setup for Quick Prototyping

The initial setup was straightforward and user-friendly. Meta provides a lot of built-in functionality, making it ideal for quick prototyping. Getting a basic project up and running took minimal effort, thanks to the clear setup guides.

Complications Arise with Advanced Features

However, as I moved beyond the basics, things became complicated. The documentation from Meta is often outdated or incomplete, making it difficult to implement more advanced features.

What I Built

I created a terrain with high-definition textures and added functionalities for teleporting (locomotion) and interacting with objects. The process involved using Unity’s XR Interaction Toolkit, which, despite some confusing moments due to lacking documentation, helped achieve the desired interactions.

Performance Issues

A significant issue I encountered was performance. Despite the simplicity of my scene, I noticed major frame rate drops, falling below 38 fps. This highlighted the need for optimization, even in basic projects, to maintain a smooth VR experience.

Takeaways

XR 11 // Exploring the Art of Creating Beautiful and Performant VR/MR Games on Standalone Headsets

Welcome to my journey into the fascinating world of Virtual Reality (VR) and Mixed Reality (MR) game development! This semester, I’m diving deep into understanding how to create visually stunning and highly performant VR/MR games that can run smoothly on standalone headsets like the Oculus Quest 3. In this first blog entry, I’ll introduce you to my research topic, discuss the unique challenges developers face, and explore why VR games vary so much in visual fidelity and user experience.

Why Focus on Standalone VR/MR Headsets?

Standalone VR/MR headsets are revolutionizing the way we experience virtual environments. Unlike tethered headsets, which rely on powerful PCs or consoles, standalone devices like the Oculus Quest 2 offer untethered freedom and accessibility. This opens up VR to a broader audience, making it crucial for developers to optimize their games for these platforms. However, creating games that are both beautiful and performant on standalone headsets presents unique challenges.

The Challenge of Balancing Performance and Visual Fidelity:

VR/MR games differ significantly in visual fidelity and user experience due to a variety of factors. Here are some of the key reasons:

  1. Hardware Limitations:
    Standalone headsets have limited processing power and memory compared to high-end PCs. Developers must optimize their games to run smoothly within these constraints, which often means sacrificing some visual detail to maintain performance.
  2. Rendering Techniques:
    Advanced rendering techniques used in PC-based VR games, such as real-time ray tracing, are often too resource-intensive for standalone devices. Developers must rely on more efficient methods like Level of Detail (LOD) and texture compression to achieve good performance.
  3. Optimization Strategies:
    Effective optimization involves a mix of techniques, including occlusion culling (not rendering objects that are out of view), efficient shaders, and baked lighting (pre-computed lighting effects). These strategies help maintain high frame rates, which are crucial for a smooth VR experience.
  4. Art Style Choices:
    The choice of art style can significantly impact both performance and visual appeal. Stylized graphics with simplified textures and models can look great while being less demanding on the hardware, whereas hyper-realistic graphics require more resources and careful optimization.

Why Do VR Games Differ So Much in Visual Fidelity and User Experience?

The variance in visual fidelity and user experience across VR games can be attributed to several factors:

  • Developer Priorities: Some developers prioritize visual fidelity, creating stunning environments but potentially compromising on performance. Others focus on smooth performance, resulting in simpler visuals.
  • Budget and Resources: Indie developers might not have access to the same level of resources and optimization tools as large studios, leading to differences in game quality.
  • Target Audience: Games aimed at a broader audience might prioritize accessibility and comfort, opting for less intensive graphics to ensure smooth gameplay for everyone.
  • Technological Evolution: As standalone VR technology evolves, newer games can leverage more advanced features and optimizations, leading to disparities between older and newer titles.

Conclusion:

As I embark on this research project, my goal is to uncover and document the best practices for balancing performance and aesthetics in standalone VR/MR games. Through a combination of literature review, case studies, and hands-on development, I aim to create a prototype game that demonstrates these principles in action. Stay tuned as I explore the technical and creative aspects of this exciting field, and share insights and discoveries along the way.

Thank you for joining me on this journey. In the next entry, I’ll delve into the initial research phase, exploring existing optimization techniques and visual enhancement strategies used in the industry. Let’s make VR/MR games not only playable but truly breathtaking!

06 | VR, AR, MR, XR – Exploring the future of extended reality and its technologies

What this blogpost is all about

To explore one of my possible research topics further, this blogpost will look into the strengths and weaknesses of virtual, augmented, mixed and extended reality systems as well as their exact definitions and current technological trends, to gain a better understanding of which system / technology to use in future endeavors when going for different experiences.

  • Offers a completely immersive experience, perfect for training, gaming and simulations
  • Can easily create spaces, that are not accessible normally and / or provide space where normally there would be none
  • Can be used in healthcare, especially in therapeutic applications, to provide immersive therapy, exposure therapy, pain management and rehabilitation
  • Isolation from real world may cause emotional distress (solitude)
  • Needs special equipment, that may be costly and / or not readily available
  • Real world information overlay, that relays information in real-time and provides additional input
  • Allows for hands-free interaction, which allows the user to engage the digital content while also staying aware in the real world
  • Useful for product visualisation and trying out products before making a buying decision
  • Limited field of view, especially on smartphone screens or tablets
  • Mobile dependency means less computing power, limiting display performance and causes need for optimisation
  • A high level of versatility, as it combines both VR and AR, it allows for a broader range of experiences to be created
  • Enables both in-room and virtual connection, communication and collaboration
  • Can, same as VR, be used in a wide variety of industries for training purposes, while also allowing for direct testing in the real world in AR
  • Different technologies and their implementation can cause performance and optimisation issues, posing technical difficulties
  • Cost of adaption currently still very high, especially when compared to pure VR or AR solutions

HTC recently presented their new inside-out tracker, that would allow for inbuilt-tracking on a multitude of existing 3rd party headsets

Both the Apple Vision Pro and the Meta Quest 3 offer hybrid solutions when it comes to VR and AR.

  • Look further into different XR solutions and their respective issues
  • Research essential tools for creating immersive virtual environments
  • Check methods of engagement and interaction within these digital environments
  • Look into accessibility and how to ensure it
  • Research into immersion and storytelling

1. Springer / Gabler.: Virtuelle Realität, in: Gabler Wirtschaftslexikon, n.y.,
https://wirtschaftslexikon.gabler.de/definition/virtuelle-realitaet-54243/ online in: https://wirtschaftslexikon.gabler.de/ [08.02.2024].
2. n.A.: Was ist Augmented Reality?, in: Omnia360, 2020, https://omnia360.de/blog/was-ist-augmented-reality/, online in: https://omnia360.de/ [08.02.2024].
3. n.A.: Mixed Reality: Wenn sich Reales und Virtuelles vermischt, in: Omnia360, 2023, https://omnia360.de/blog/mixed-reality/, online in: https://omnia360.de/ [08.02.2024].
4. n.a.: Extended Reality, in: RyteWiki, n.y., https://de.ryte.com/wiki/Extended_Reality, online in: https://de.ryte.com/wiki/Hauptseite [08.02.2024].
5. Hayden, S.: Vision Pro Teardown Shows Balancing Act Between Cutting Edge Tech & Weighty Design, in: ROADTOVR, 2024, https://www.roadtovr.com/apple-vision-pro-teardown-ifixit/, online in: https://www.roadtovr.com/ [08.02.2024].
6. Hayden, S.: Quest 3 Teardown Shows Just How Slim the Headset Really Is, in: ROADTOVR, 2023, https://www.roadtovr.com/meta-quest-3-teardown-ifixit-repair/, online in: https://www.roadtovr.com/ [08.02.2024].
7. Hayden, S.: Vive Ultimate Tracker Gets Beta Support for Third-Party PC VR Headsets, in: ROADTOVR, 2024, https://www.roadtovr.com/vive-ultimate-tracker-quest-index-pico/, online in: https://www.roadtovr.com/ [08.02.2024].
8. n.a.: What to Watch: February 2024 Highlights, n: Meta Quest-Blog, 2024, https://www.meta.com/de-de/blog/quest/what-to-watch-free-meta-quest-tv-vr-film, online in: https://www.meta.com/at/ [08.02.2024]

XR 8 // Beyond Gaming: XR in the Entertainment Industry

XR is a technology that has been gaining popularity in the entertainment industry. While gaming is a major part of XR, this post would explore its other applications in entertainment, such as virtual concerts, immersive theater, and interactive art installations.

Virtual Concerts: A New Stage for Artists and Fans

Imagine attending a concert by your favorite artist from the comfort of your living room, yet feeling as though you’re right there in the front row. XR makes this possible. Virtual concerts in XR are not just about streaming a live performance; they are about creating an immersive, interactive experience. Fans can choose different viewpoints, interact with the environment, and even feel the vibration of the music through haptic feedback technology.

Artists like Travis Scott and Marshmello have already experimented with these concepts, drawing millions of virtual attendees. These events aren’t just concerts; they’re hyper-realistic experiences blending music, visual art, and digital interaction.

Meta is also pushing strongly into this direction by hosting live concerts on their Meta Quest Plattform. There will be for example a Lice concert by imagine Dragon at June 15th on this plattform.

Immersive Theater: Blurring the Lines Between Audience and Performer

Theater has always been an immersive experience, but XR takes this immersion to a new level. Unlike traditional theater, where the audience is a passive observer, XR theater can make viewers a part of the performance. Through VR headsets or AR applications, audience members can experience different narratives from multiple perspectives, interact with the performers, or even influence the outcome of the story.

Companies like Punchdrunk and Magic Leap are pioneering in this space, creating experiences where the line between audience and performer is blurred, leading to a more intimate and personal form of storytelling.

Interactive Art Installations: Stepping into the Canvas

Art has always been a medium for expression and experience, but XR adds an interactive dimension to it. Interactive art installations using XR technologies allow viewers to step into the artwork, manipulate elements, and experience the art in a multi-sensory manner. This form of art is not just to be seen but to be experienced and interacted with.

Artists like Refik Anadol and teamLab are at the forefront, creating stunning visual landscapes that respond to and evolve with viewer interactions. These installations are not static; they are dynamic and alive, offering a personalized experience to every viewer.

Conclusion: A New Era of Entertainment

XR in entertainment is more than a technological advancement; it’s a paradigm shift in how we experience art, music, and storytelling. It’s about creating worlds that we can step into, interact with, and be a part of. As we look to the future, the possibilities are boundless. We’re not just witnessing a change in entertainment; we’re participating in the birth of entirely new forms of expression and experience.

This is just the beginning. As XR technologies continue to evolve, we can expect to see even more innovative and immersive experiences that challenge our perceptions of reality and entertainment. The future of entertainment is here, and it’s virtual, augmented, and mixed.

Sources

XR 6 // UX in Mixed Reality

Physical Considerations

  • Environmental Interface: Designers must consider the entire surrounding environment as a potential interface, moving beyond the confines of a flat screen.
  • Comfortable Focusing Range: Interactive elements should be placed within a range of half a meter to 20 meters, the comfortable focusing distance for human eyes.
  • Beyond Reach: For interacting with objects 20 meters away, MR utilizes tools like handheld controllers or technologies such as eye tracking and hand recognition.

Eye Movement

The human eye comfortably moves 30°-35° in all directions, creating a field of view (FoV) of about 60°. Key UI elements should be placed within this range for easy accessibility.

Key Elements are arranged in a FoV of ~60°

Arms Reach

The average arm’s length is 50–70 cm. Essential interactions should be positioned at this distance for ease of use.

Designing for Distance

Drawing from Kharis O’Connell’s “Designing for Mixed Reality”, the interaction space is divided into three layers:

  1. Interaction Plane: Core UI elements are placed within arm’s reach.
  2. Mid-Zone: For placement of virtual objects in MR.
  3. Legibility Horizon: The limit for comfortable focus and reading, approximately 20 meters. Beyond this, only images should be used.

Addressing User Fatigue

  • Ease of Exit: Always provide a straightforward method to exit or pause, like a button.
  • Save Functionality: Allow users to save progress to prevent data loss and alleviate exit anxiety.

Scaling and Interaction

  • Button Size: Ensure buttons are large enough, with a minimum size of 2 centimeters.
  • Natural Interactions: Mimic real-world interactions, like picking up a mug by its handle.

Poses and Gestures

  • Clear Instructions: Given the novelty of MR, provide explicit instructions for poses and gestures.
  • Simplicity: Use poses and gestures sparingly to avoid overwhelming users.

Feedback and Guidance

  • System Feedback: Implement feedback mechanisms like haptic feedback or color changes when interacting with virtual elements.
  • Clear Guidance: Offer concise and clear instructions, crucial in the unfamiliar terrain of MR.

Mixed Reality is not just a new technology; it’s a new way of interacting with our world. As we design for MR, we must consider the unique physical and perceptual aspects of this medium. By focusing on intuitive interactions, comfortable viewing distances, and clear instructions, we can create MR experiences that are not only engaging but also accessible and user-friendly. The future of MR is bright, and as designers and technologists, it’s our responsibility to pave the way for this exciting new era of digital interaction.

Sources